Senior Division: Solutions to Problems 2

S1. A positive integer ends in the digit 4 and has the property that it becomes four times as large when the 4 is moved from the end and placed at the front. What is the smallest such number?

Solution

Let the number be N and have $n+1$ digits. So $N=10 x+4$ where x has n digits.
Moving the 4 from the end to the front gives the number $4 \times 10^{n}+x$. So we have the equation

$$
4(10 x+4)=4 \times 10^{n}+x .
$$

Rearranging gives that

$$
39 x=4\left(10^{n}-4\right) .
$$

Thus 39 must divide $10^{n}-4$.

Value of n	1	2	3	4	5
Value of $10^{n}-4$	6	96	996	9996	99996

The smallest n for which this holds is $n=5$ in which case $4\left(10^{5}-4\right)=39 \times 10256$.
Check that $4 \times 102564=410256$. So the smallest such number is 102564 .
S2.
Let $A B C D$ be a quadrilateral. Let A^{\prime} be the midpoint of $A B, B^{\prime}$ the mid-point of $B C, C^{\prime}$ the mid-point of $C D$ and D^{\prime} the mid-point of $A D$. Draw the lines $A^{\prime} C^{\prime}$ and $B^{\prime} D^{\prime}$ and let a, b, c, d be the areas of the four minor quadrilaterals as shown in the figure. Prove that

$$
a+c=b+d .
$$

Solution

From the point of intersection O of the lines $A^{\prime} C^{\prime}$ and $B^{\prime} D^{\prime}$, draw the lines to each of the vertices of the quadrilateral. Recall that the area of a triangle is $1 / 2 \times$ base \times height.

Now triangles $O A A^{\prime}$ and $O B A^{\prime}$ have equal bases and the same height and so have the same area. The same applies to the pairs of triangles $\left(O B B^{\prime}, O C B^{\prime}\right),\left(O C C^{\prime}, O D C^{\prime}\right)$ and $\left(O D D^{\prime}, O A D^{\prime}\right)$. So $a+c=$ area of triangle $O A A^{\prime}+$ area of triangle $O A D^{\prime}+$ area of triangle $O C B^{\prime}+$ area of triangle $O C C^{\prime}=$ area of triangle $O B A^{\prime}+$ area of triangle $O D D^{\prime}+$ area of triangle $O B B^{\prime}+$ area of triangle $O D C^{\prime}=b+d$.

S3. Find all values of x such that

$$
\log _{2}(3 x+2)+\log _{2}(4 x-4)=3
$$

Solution

$$
\begin{aligned}
\log _{2}((3 x+2)(4 x-4)) & =3 \\
(3 x+2)(4 x-4) & =2^{3}=8 \\
(3 x+2)(x-1) & =2 \\
3 x^{2}-x-2 & =2 \\
3 x^{2}-x-4 & =0 \\
(3 x-4)(x+1) & =0 \\
x & =\frac{4}{3} \text { or }-1
\end{aligned}
$$

When $x=\frac{4}{3}, 3 x+2=6$ and $4 x-4=\frac{4}{3}$. Then $\log _{2} 6+\log _{2} \frac{4}{3}=\log _{2}\left(6 \times \frac{4}{3}\right)=\log _{2} 8=3$ so this is a solution of the original equation.

When $x=-1,3 x+2=-1$ and $4 x-4=-8$ so this is not a solution of the original equation, because we cannot take logs of negative numbers.

So $x=\frac{4}{3}$ is the only solution of the original equation.

Solution

Let the radius of C_{1} be r.
In triangle T_{1}, two sides have lengths $r+16$ and $r-16$. The remaining side has length a where $a^{2}=(r+16)^{2}-(r-16)^{2}=2 \times 32 r=64 r$. So $a=8 \sqrt{r}$.
In triangle T_{2}, two sides have lengths $r+9$ and $r-9$. The remaining side has length b where $b^{2}=(r+9)^{2}-(r-9)^{2}=2 \times 18 r=36 r$ so $b=6 \sqrt{r}$.

In triangle T_{3}

$$
\begin{aligned}
(2 \sqrt{r})^{2}+(2 r-25)^{2} & =25^{2} \\
4 r+\left(4 r^{2}-4 \times 25 r+25^{2}\right) & =25^{2} \\
r(4+4 r-100) & =0
\end{aligned}
$$

giving $r=0$ or 24 and $r=0$ does not give a circle. So the radius of C_{1} is 24 .

Check: $9+2 r-25+16=48$ and $2 r=48$.

S5. If p and q are positive integers, $\max (p, q)$ is the maximum of p and q and $\min (p, q)$ is the minimum of p and q. So for example max $(3,6)=6$ and $\min (3,6)=3$.

Determine the number of ordered pairs (x, y) which satisfy the equation

$$
\max (70, \min (x, y))=\min (\max (70, x), y)
$$

where x and y are positive integers with $x \leqslant 100$ and $y \leqslant 100$.

Solution

(To save space we will abbreviate left-hand side as LHS and right-hand side as RHS.)
If $x \leqslant 70$, then $\min (x, y) \leqslant 70$ so the LHS $=70$.
Also $\max (70, x)=70$ so RHS $=\min (70, y)=$ LHS $=70$. So $y \geqslant 70$.

If $x>70$, then $\max (70, x)=x$ so RHS $=\min (x, y)$.
Hence

$$
\begin{gathered}
\text { LHS }=\max (70, \min (x, y))=\text { RHS }=\min (x, y) \\
\min (x, y) \geqslant 70 \\
y \geqslant 70
\end{gathered}
$$

Check:
If $y<70, \max (70, x) \geqslant 70$ so RHS $=\min (70, y)=y$.
Also LHS $=\max (70$, less than 70$)=70=$ RHS $=y$, so $y=70$ contradicting the original supposition that $y<70$.

For every $x=1,2, \ldots, 100, y$ can be $70,71, \ldots, 100$.
100 values of x times 31 values for y gives 3100 possible ordered pairs.

