MATHEMATICAL CHALLENGE 2019-2020

Entries must be the unaided efforts of individual pupils.

Solutions must include explanations and answers without explanation will be given no credit.
Do not feel that you must hand in answers to all the questions.

Senior Division: Problems 2

S1. A positive integer ends in the digit 4 and has the property that it becomes four times as large when the 4 is moved from the end and placed at the front. What is the smallest such number?

S2.
Let $A B C D$ be a quadrilateral. Let A^{\prime} be the midpoint of $A B, B^{\prime}$ the mid-point of $B C, C^{\prime}$ the mid-point of $C D$ and D^{\prime} the mid-point of $A D$. Draw the lines $A^{\prime} C^{\prime}$ and $B^{\prime} D^{\prime}$ and let a, b, c, d be the areas of the four minor quadrilaterals as shown in the figure. Prove that $a+c=b+d$.

S3. Find all values of x such that

$$
\log _{2}(3 x+2)+\log _{2}(4 x-4)=3
$$

S4.
The diagram shows three circles, C_{1}, C_{2} and C_{3} and two parallel lines, L_{1} and L_{2}. C_{1} touches both the lines, C_{2} touches L_{1} and C_{1}, and C_{3} touches C_{1}, C_{2} and L_{2}. The radius of C_{2} is 16 and the radius of C_{3} is 9 . Find the radius of C_{1}.

S5. If p and q are positive integers, $\max (p, q)$ is the maximum of p and q and $\min (p, q)$ is the minimum of p and q. So for example $\max (3,6)=6$ and $\min (3,6)=3$.

Determine the number of ordered pairs (x, y) which satisfy the equation

$$
\max (70, \min (x, y))=\min (\max (70, x), y)
$$

where x and y are positive integers with $x \leqslant 100$ and $y \leqslant 100$.

