Senior Division 2016-2017 Round 2 Solutions

S1. In the diagram the square has two of its vertices on the circle of radius 1 unit and the other two vertices lie on a tangent to the circle. Find the area of the square.

Solution

Let the side of the square be $2 x$ units.
Then the shaded right-angled triangle shown has sides x and $2 x-1$ and hypotenuse 1 . By Pythagoras' theorem,

$$
\begin{aligned}
x^{2}+(2 x-1)^{2} & =1^{2} \\
x^{2}+4 x^{2}-4 x+1 & =1 \\
5 x^{2}-4 x & =0 \\
x(5 x-4) & =0
\end{aligned}
$$

$x=0$ gives a degenerate triangle and square, so the required solution is $x=\frac{4}{5}$. Hence the area of the square is

$$
\left(\frac{8}{5}\right)^{2}=\frac{64}{25}=2.56 \text { units }^{2}
$$

S2.

In the diagram $S T$ is parallel to $Q R, U T$ is parallel to $S R, P U=4 \mathrm{~cm}$ and $U S=6 \mathrm{~cm}$.
Find the length of $S Q$.
Solution
In triangle $P S R$ we can say

$$
\frac{4}{6}=\frac{P U}{U S}=\frac{P T}{T R}
$$

Now in triangle $P Q R$ we can say

$$
\frac{4}{6}=\frac{P T}{T R}=\frac{P S}{S Q}=\frac{10}{S Q}
$$

Hence

$$
S Q=10 \times \frac{6}{4} .
$$

So $S Q=15$.

S3. Show that the equation of any circle passing through the points of intersection of the ellipse $(x+2)^{2}+2 y^{2}=18$ and the ellipse $9(x-1)^{2}+16 y^{2}=25$ can be written in the form

$$
x^{2}-2 a x+y^{2}=5-4 a
$$

where a is a constant.

Solution

The ellipse $(x+2)^{2}+2 y^{2}=18$ has centre $(-2,0)$ and passes through $(-2, \pm 3)$ and $(-2 \pm \sqrt{14}, 0)$.

The ellipse $9(x-1)^{2}+16 y^{2}=25$ has centre $(1,0)$ and passes through $\left(1, \pm \frac{5}{4}\right)$, $\left(\frac{8}{3}, 0\right)$ and $\left(-\frac{2}{3}, 0\right)$.

A diagram shows that there are two
 crossing points.

Eliminating y^{2} :

$$
\begin{gathered}
9(x-1)^{2}-8(x+2)^{2}=25-8 \times 18 \\
x^{2}-50 x=-96 \\
(x-25)^{2}-625=-96 \\
(x-25)^{2}=625-96=529=23^{2} \\
x=25-23=2 \text { or } x=25+23=48
\end{gathered}
$$

Alternatively, when $x=48$, the y^{2} values are negative, and so there is no real solution for y so the crossing points are at $x=2$.
When $x=2,(2+2)^{2}+2 y^{2}=18$ and so $y= \pm 1$.
Any circle passing through both these points must have its centre on the x-axis, say at ($a, 0$). Thus its equation is

$$
(x-a)^{2}+y^{2}=r^{2}
$$

It also passes through the points $(2, \pm 1)$ and so

$$
\begin{gathered}
(2-a)^{2}+(\pm 1)^{2}=r^{2} \\
r^{2}=a^{2}-4 a+4+1=a^{2}-4 a+5
\end{gathered}
$$

So the equation is

$$
\begin{aligned}
(x-a)^{2}+y^{2} & =a^{2}-4 a+5 \\
x^{2}-2 a x+a^{2}+y^{2} & =a^{2}-4 a+5 \\
x^{2}-2 a x+y^{2} & =5-4 a .
\end{aligned}
$$

as required.

S4. There are 6 pairs of siblings from 6 different families.
(a) How many ways can they be divided into two teams so that both siblings of a pair are never in the same team?
(b) How many ways can they be divided into three teams so that both siblings of a pair are never in the same team?
Solution
(a) There must be one sibling from each pair on the first team. There are 2 ways to choose a sibling from each pair, so 2^{6} ways to choose the first team. But the teams are interchangeable, so divide by 2 to get 2^{5} ways of choosing the two teams.
(b) Select the first team of four by first choosing the pairs A, B, C, D in $\frac{6 \times 5 \times 4 \times 3}{4!}=15$ ways. Then choose one sibling from each of these pairs in 2 ways each time, giving $15 \times 2^{4}=240$ ways in all.
Then select the second team. It must include one each from pairs E and F (otherwise both siblings in these pairs would be in the third team), in $2^{2}=4$ ways. And also 2 of the remaining siblings from pairs A, B, C, D, in $\frac{4 \times 3}{2!}=6$ ways. These can be combined to form the second team in $4 \times 6=24$ ways.
The remaining siblings are from different families and form the third team in 1 way.
Finally the three teams are interchangeable, so divide by $3!=6$.
So there are $\frac{240 \times 24 \times 1}{6}=960$ ways of selecting the three teams of four.

S5. Two forgetful friends agree to meet in a coffee shop one afternoon but each has forgotten the agreed time. Each remembers that the agreed time was somewhere between 2 pm and 5 pm. Each decides to go to the coffee shop at a random time between 2 pm and 5 pm , wait for half an hour, and leave if the other doesn't arrive. Find the probability that they meet.

Solution

Call the friends A and B.
If A arrives between 2.30 pm and 4.30 pm (2.5 and 4.5 on the graph scale) then he will meet B provided B arrives within half an hour of A's arrival, either before or after. Then they will meet if B arrives in this one hour slot, out of his possible 3 hour range. Therefore the probability of meeting is $1 / 3$.

If A arrives at 2 pm then he will meet B only if B arrives before 2.30 pm , giving a probability of $(1 / 2) / 3=1 / 6$. If A arrives between 2 and 2.30 pm (2 and 2.5 on the graph scale) then they will meet provided B either arrives first or within half an hour after A. Thus the probability increases linearly between 2 and 2.30 pm from $1 / 6$ to $1 / 3$.

There is a similar effect when A arrives after 4.30 pm , as shown on the graph.
So the overall probability that they meet is

$$
\frac{1}{6} \frac{\frac{1}{6}+\frac{1}{3}}{2}+\frac{2}{3} \times \frac{1}{3}+\frac{1}{6} \frac{\frac{1}{6}+\frac{1}{3}}{2}=\frac{11}{36}
$$

