S1. I have two blue dice and one red die.
I use the blue dice to play a simple game: if I roll a double six, I win. Otherwise, I lose.
I also roll the red die. If I roll a one, I'll lie about whether I've won or lost the game; if I roll any other number, I'll tell the truth.

I roll all three dice.
I turn to you and say "I won!".
What is the probability that I did in fact win the game?

Solution

$\mathrm{P}($ win $)=\frac{1}{6} \times \frac{1}{6}=\frac{1}{36}(\mathrm{~A})$

$$
\frac{5+1+175+35}{216}=1
$$

$\mathrm{P}($ say win $)=\mathrm{P}($ win and say win $)+\mathrm{P}($ lose and say win $)$

$$
\begin{equation*}
=\frac{5}{216}+\frac{35}{216}=\frac{40}{216} \tag{B}
\end{equation*}
$$

$\mathrm{P}($ win given say win $)=\mathrm{P}($ win and say win $) / \mathrm{P}($ say win $)$

$$
=\frac{\frac{5}{216}}{\frac{40}{216}}=\frac{5}{40}=\frac{1}{8}
$$

So when I say I won the game, the probability that I did in fact win is $\frac{1}{8}$.

S2. A coach travels over a hilly route from town A in the highlands to town B by the coast. Going uphill it travels at 42 mph , going downhill it travels at 56 mph and on level ground it travels at 48 mph . It takes 2 hours and 20 minutes to travel from A to B and 2 hours and 40 minutes to travel back. Find the distance between A and B.

Solution

Let the distance from A to B be u miles up, d miles down and f miles on the flat. Then

$$
\frac{u}{42}+\frac{d}{56}+\frac{f}{48}=\frac{7}{3}
$$

and on the return route where uphill and downhill exchange

$$
\frac{d}{42}+\frac{u}{56}+\frac{f}{48}=\frac{8}{3} .
$$

Adding:

$$
\begin{aligned}
(d+u)\left(\frac{1}{42}+\frac{1}{56}\right)+\frac{2 f}{48} & =5 \\
(d+u) \times \frac{2}{48}+\frac{2 f}{48} & =5 \\
d+u+f & =\frac{5 \times 48}{2}=120 .
\end{aligned}
$$

Hence the distance is 120 miles.

Now check that this is possible, since u could work out to be negative!
Subtracting:

$$
\begin{aligned}
\frac{d-u}{42}-\frac{d-u}{56} & =\frac{1}{3} \\
(d-u)\left(\frac{1}{42}-\frac{1}{56}\right) & =\frac{1}{3} \\
d-u & =56
\end{aligned}
$$

If $u=0$, then $d=56$ and $f=64$.
The hilly route suggests that $u>0$, but that is certainly possible:
e.g. if $u=28$, then $d=84$ and $f=8$
i.e. 28 miles uphill, 84 miles downhill and 8 miles on the flat.

S3. A convex polygon with 12 sides is inscribed in a circle. This polygon has six sides of length $\sqrt{2}$ and six sides of length $\sqrt{24}$ in some order. What is the radius of the circle?
Solution
There must be at least one side of length $\sqrt{2}$ which is adjacent to a side of length $\sqrt{24}$.

Let these sides be $A B$ and $B C$ respectively and let the centre of the circle be O. The arc from A to C is $1 / 6$ of the total circumference of the circle. So the angle $A O C$ is 60°. Since $A O=C O$ is the radius r of the circle, $A C$ is also equal to r. So the triangle $A B C$ has sides of length $\sqrt{2}, \sqrt{24}$ and r. Draw the diameter BOD.
Then $\angle A O C$ is twice $\angle A D C$ as they are subtended by the same chord $A C$ so $\angle A D C=\frac{1}{2} \angle A O C=30^{\circ}$.
But since $A B C D$ is cyclic, $\angle A B C+\angle A D C=180^{\circ}$. So $\angle A B C=150^{\circ}$.
Now applying the cosine rule to triangle $A B C$ gives

$$
r^{2}=(\sqrt{2})^{2}+(\sqrt{24})^{2}-2 \sqrt{2} \sqrt{24}\left(\frac{-\sqrt{3}}{2}\right)=38
$$

So the radius is $\sqrt{38}$.

S4. The diagram shows a tetrahedron $P R W U$ which fits snugly inside a cube $P Q R S T U V W$.
Find the ratio of the surface area of the cube to the surface area of the tetrahedron.

Solution

Let the cube have side a.
Then the surface area of each face is a^{2}, and the total surface area is $6 a^{2}$.
Each face of the tetrahedron is an equilateral triangle with side $\sqrt{2} a$. The height of these triangles is $\sqrt{3 / 2} a$ and the area is $\sqrt{3} a^{2} / 2$. So the four faces have total area $2 \sqrt{3} a^{2}$.
So the ratio is $6 a^{2}: 2 \sqrt{3} a^{2}$ or $\sqrt{3}: 1$.

S5. Let n be a three-digit number and let m be the number obtained by reversing the order of the digits in n. Suppose that m does not equal n and that $n+m$ and $n-m$ are both divisible by 7 . Find all such pairs n and m.

Solution

Since $(n+m)+(n-m)=2 n$ and $(n+m)-(n-m)=2 m, 7$ divides both $2 n$ and $2 m$; hence 7 divides both n and m.

Let $n=100 a+10 b+c$; then $m=100 c+10 b+a$.
We can assume, by interchanging n and m if necessary, that $a>c$ (noting that $a \neq c$). Since we can express 100 as $7 \times 14+2$ and 10 as $7+3$, we have

$$
n=(14 \times 7+2) a+(7+3) b+c,
$$

and, since n is divisible by 7 , so is $2 a+3 b+c$. Similarly, $2 c+3 b+a$ is also divisible by 7 . Subtracting these,

$$
(2 a+3 b+c)-(2 c+3 b+a)=a-c
$$

so we deduce that $a-c$ is divisible by 7. Since a and c are integers between 1 and 9 and, by assumption, $a>c$ and $a-c=7$. There are only two possibilities:

$$
\text { either } a=8 \text { and } c=1 ; \text { or } a=9 \text { and } c=2 \text {. }
$$

Since $2 a+3 b+c$ is divisible by 7, the first case gives $3 b+17$ is divisible by 7 and hence $3 b+3=3(b+1)$ is as well, giving $b=6$. In the second case, $3 b+20$ is divisible by 7 and hence $3 b-1$ is as well, giving $b=5$. Thus the only possible pairs of numbers are $\{861,168\}$ and $\{952,259\}$.

