2013-2014 Senior Solutions Round 2

S1.

$P Q R$ is any triangle. The side $P Q$ is extended to S where $P Q=Q S$. The point U divides the side $P R$ in the ratio $3: 2$. The point T is where the lines $Q R$ and $S U$ cross.
Find the ratio $\frac{Q T}{Q R}$.

Solution

Construct $S V$ parallel to $Q R$ to meet $P R$ produced at V. (This is the tricky bit!)

From similar triangles $P S V$ and $P Q R$, because $P S=2 P Q, P V=2 P R$. So $R V=5 x$.
Also $S V=2 Q R$.
From similar triangles $U T R$ and $U S V$, $T R=\frac{2}{7} S V={ }_{7}^{4} Q R$.

Therefore $Q T=Q R-T R=\frac{3}{7} Q R$.

i.e. $\frac{Q T}{Q R}=\frac{3}{7}$.

Alternative:

Draw $Q W$ parallel to $S U$ to meet $P R$ at W.
Then $\frac{Q T}{T R}=\frac{W U}{U R}$ from triangles $Q R W, T R U$.
Also $\frac{W U}{P U}=\frac{Q S}{P S}=\frac{1}{2}$ from triangles $Q W P, S U P$.
Hence $W U=\frac{1}{2} P U$.
So $\frac{Q T}{T R}=\frac{P U}{2 U R}=\frac{3}{4}$ and therefore $\frac{Q T}{Q R}=\frac{3}{7}$.

S2.

Dots are arranged in a rectangular grid with 4 rows and n columns. Consider different ways of colouring the dots, in which each dot either red or blue. A colouring is 'good' if no four dots of the same colour form a rectangle with horizontal and vertical sides.
Find the maximum value of n for which there is a good colouring.

Solution

First note that a grid with a repeated column has four dots of the same colour at the corners of a rectangle.

Consider a grid with only 3 rows. Then the only possible columns are
rrbbbrrb
rbrbrbrb
rbbrrbb
The middle 6 columns form the largest good colouring.
Adding an extra row can never turn a bad colouring good, and so a good grid with 4 rows can have at most 6 columns.
rbbbrr
brbrbr
bbrrb
rrrbbb
This example with 4 rows shows that a good grid with 6 columns is possible.
Hence 6 is the maximum value of n for which there is a good colouring.
S3.
A triangle has sides of length 4, 7 and 9 units. Find the length of the longest median. Show your reasoning.

Solution

The longest median bisects the shortest side. Let it have length x and make angle a (and $\pi-a$) with the shortest side.
Then using the cosine rule on the two small triangles

$$
\begin{aligned}
7^{2} & =x^{2}+2^{2}-2 \times 2 x \cos a \\
9^{2} & =x^{2}+2^{2}-2 \times 2 x \cos (\pi-a) \\
& =x^{2}+2^{2}+2 \times 2 x \cos a
\end{aligned}
$$

Adding

$$
\begin{aligned}
49+81 & =130=2 x^{2}+2 \times 4 \\
x^{2} & =65-4=61
\end{aligned}
$$

So the length of the longest median is $\sqrt{61}$.

S4.

Two straight sections of a road, each running from east to west, and located as shown, are to be joined smoothly by a new roadway consisting of arcs of two circles of equal radius. The existing roads are to be tangents at the joins and the arcs themselves are to have a common tangent where they meet. 'Find the length of the radius of these arcs.

Solution

i.e. the radius of the circles is 625 metres

S5.

Let

$$
f(x)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n},
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ are given numbers. It is given that $f(x)$ can be written in the form

$$
f(x)=\left(x+k_{1}\right)\left(x+k_{2}\right) \ldots\left(x+k_{n}\right) .
$$

By considering $f(0)$, or otherwise, show that $k_{1} k_{2} \ldots k_{n}=a_{n}$.
Show also that

$$
\left(k_{1}+1\right)\left(k_{2}+1\right) \ldots\left(k_{n}+1\right)=1+a_{1}+a_{2}+\ldots+a_{n}
$$

and give the corresponding result for $\left(k_{1}-1\right)\left(k_{2}-1\right) \ldots\left(k_{n}-1\right)$.
Hence, find the roots of the equation

$$
x^{4}+22 x^{3}+172 x^{2}+552 x+576=0
$$

given that they are all integers.
Solution

$$
\begin{aligned}
& f(0)=k_{1} k_{2} \ldots k_{n}=a_{n} \\
& f(1)=\left(1+k_{1}\right)\left(1+k_{2}\right) \ldots\left(1+k_{n}\right)=1+a_{1}+a_{2}+\ldots+a_{n}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left(k_{1}+1\right) & \left(k_{2}+1\right) \ldots\left(k_{n}+1\right)=1+a_{1}+a_{2}+\ldots+a_{n} \\
f(-1) & =\left(-1+k_{1}\right)\left(-1+k_{2}\right) \ldots\left(-1+k_{n}\right) \\
& =(-1)^{n}+(-1)^{n-1} a_{1}+(-1)^{n-2} a_{2}+\ldots+a_{n}
\end{aligned}
$$

Hence

$$
\left(k_{1}-1\right)\left(k_{2}-1\right) \ldots\left(k_{n}-1\right)=(-1)^{n}\left[1-a_{1}+a_{2}-\ldots+(-1)^{n} a_{n}\right]
$$

The roots of the equation $f(x)=0$ are $x=-k_{1},-k_{2}, \ldots,-k_{n}$
The roots of the given equation are all negative, because when $x=0$ the LHS is 576 , and it increases as x increases.
The product of the four k_{i} values for the LHS of this equation is $576=2^{6} \times 3^{2}$ The product $\left(k_{1}-1\right)\left(k_{2}-1\right) \ldots\left(k_{n}-1\right)=(-1)^{4}[1-22+172-552+576]=175=5^{2} \times 7$ making it possible that the four values of $k_{i}-1$ are $1,5,5,7$.
This would mean that the 4 values of k_{i} were $2,6,6,8$, which fits with product of 576 found earlier.
Since $f(1)=(1+2)(1+6)(1+6)(1+8)=1323$ and $f(-2)=(2-2) \times \ldots=0$ the function has the required values at four different values of x and hence will have the same values everywhere, in particular the same zeroes.
Thus we have the correct values for the k_{i}.
The roots of the given equation are therefore $-2,-6,-6,-8$.

