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Senior Division: Problems 2

S1.  is any triangle.  The side  is extended to  where
.  The point  divides the side  in the ratio .

The point  is where the lines   and  cross.
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Find the ratio .
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S2. Dots are arranged in a rectangular grid with 4 rows and  columns.  Consider different ways of
colouring the dots, in which each dot either red or blue.  A colouring is ‘good’ if no four dots of the
same colour form a rectangle with horizontal and vertical sides.

n

Find the maximum value of  for which there is a good colouring.n

S3. A triangle has sides of length 4, 7 and 9 units.  Find the length of the longest median.  Show your
reasoning.

S4.

1200 metres

900 metres

Two straight sections of a road, each running from east to west, and located as shown, are to be
joined smoothly by a new roadway consisting of arcs of two circles of equal radius.  The existing
roads are to be tangents at the joins and the arcs themselves are to have a common tangent where
they meet.  ′Find the length of the radius of these arcs.



S5. Let 

f (x) = xn
+ a1x

n − 1
+  …  + an,

where  are given numbers.  It is given that  can be written in the forma1, a2, … , an f (x)

f (x) = (x + k1) (x + k2) … (x + kn) .

By considering , or otherwise, show that .f (0) k1k2… kn = an

Show also that 

(k1 + 1) (k2 + 1) … (kn + 1) = 1 + a1 + a2 +  …  + an

and give the corresponding result for .(k1 − 1) (k2 − 1)… (kn − 1)

Hence, find the roots of the equation

x4
+ 22x3

+ 172x2
+ 552x + 576 = 0,

given that they are all integers.
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