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Senior Division: Problems 1

S1. In a snowball ‘fight’, where snowballs are identical spheres, your opponents have stacked their
snowballs in a square pyramid.  You are about to count the snowballs along the bottom edge of the
opponent's stack when one appears with another snowball.  After giving him a telling off, the
opposition's leader takes apart the square pyramid and builds a new, triangular pyramid using all the
original snowballs and the extra one.  Find two possible values for the number of snowballs that your
opponents now have.

S2. Three cyclists are out for the day.  Two are on a tandem and one on an ordinary cycle.  Disaster
struck when the ordinary cycle was stolen while they were having lunch in a café.  They were left
with the tandem and 20 miles to go.  The tandem has to have two riders and the third person walks.
Anne can walk a mile in 20 minutes, Sam in 30 minutes and Oscar in 40 minutes.  The tandem
travels at 20 miles per hour no matter which pair is riding it.  What is the shortest time for all three to
get home?

S3. A group of seven girls − Ally, Bev, Chi-chi, Des, Evie, Fi and Grunt – were playing a game in which
the counters were beans. Whenever a girl lost a game, from her pile of beans she had to give each of
the other girls as many beans as they already had. They had been playing for some time and they all
had different numbers of beans. They then had a run of seven games in which each girl lost a game in
turn, in the order given above. At the end of this sequence of games, amazingly, they all had the same
number of beans – 128. How many did each of them have at the start of this sequence of seven games?

S4. Pat and Jo were having a holiday in Greece and visited a temple.  They
noticed a wall tile as shown alongside.
The shaded triangle is equilateral with one of its vertices at a one corner
of the surrounding square and the others on two of the sides of the
square.  Pat said “I bet the area of the black triangle is the same as the
combined areas of the two white triangles”.  “Don't be daft!” said Jo.
Who was right and why?

S5. Let  be the lengths of the sides of a triangle. Show thata, b, c
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Describe the shape of a triangle for which the expression, , is very close to 2.
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END OF PROBLEM SET 1


