2009 Middle Set 2 solutions

M1. How many squares, of *all* sizes, are seen on a standard, 9×9 Sudoku grid? *Solution*

Consider the numbers of squares of all possible sizes:

1×1 squares	there are $9 \times 9 = 81$
2×2	these could have their top left corner in any square which is not in the
	last row or column giving $8 \times 8 = 64$ possibilities
3 × 3	$7 \times 7 = 49$

etc

Hence the number of squares is 1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81 = 285.

M2. I took the same route when I cycled to and from work today. Due to a strong headwind on the way home, the return journey took twice as long as the journey to work. If my average speed for the whole journey was 16 km/h what were my average speeds to and from work? *Solution*

Let the distance to work be *x* km and the journey time in the morning be *t* hours.

Total time = $3t = \frac{2x}{16} = \frac{x}{8}$ so that $\frac{x}{t} = 24$ and hence the speed on way to work = 24 km/h. On the return journey, average speed = $\frac{x}{2t} = \frac{1}{2}\frac{x}{t} = 12$ so the return journey speed is 12 km/h.

M3. The diagram below illustrates a spiral sequence A_0 , A_1 , A_2 , A_3 , ... which starts at the origin. The first leg of the spiral has length 1 and after the that, the length increases by one each time.

What is the sum of the 6 coordinates of A_{2001} , A_{2002} and A_{2003} ?

Solution

Looking at the coordinates of the points A_0, A_1, \ldots

 $\begin{array}{ccccccc} A_0(0, \ 0) & A_1(0, \ 1) & A_2(2, \ 1) & A_3(2, \ -2) \\ A_4(-2, \ -2) & A_5(-2, \ 3) & A_6(4, \ 3) & A_7(4, \ -4) \\ A_8(-4, \ -4) & A_9(-4, \ 5) & A_{10}(6, \ 5) & A_{11}(6, \ -6) & \text{etc} \\ \end{array}$

Note that the points A_0 , A_4 , A_8 , ..., where the suffix is a multiple of 4 are given by $A_n\left(-\frac{n}{2}, -\frac{n}{2}\right)$. Also, when *n* is a multiple of 4:

$$A_{n+1}$$
 is $\left(-\frac{n}{2}, \frac{n}{2} + 1\right)$; A_{n+2} is $\left(\frac{n}{2} + 2, \frac{n}{2} + 1\right)$ and A_{n+3} is $\left(\frac{n}{2} + 2, -\frac{n}{2} - 2\right)$.

Taking n = 2000, we get A_{2000} (-1000, -1000), A_{2001} (-1000, 1001), A_{2002} (1002, 1001) and A_{2003} (1002, -1002).

So the required sum is: -1000 + 1001 + 1002 + 1001 + 1002 - 1002 = 2004.

M4. The diagram shows a regular hexagon with its diagonals drawn and six circles fitted into the regions created. What fraction of the circumscribing circle is shaded?

Solution Consider one of the shaded circles.

Let OP = r = radius of the small circle and AB = BC = CA = R = radius of the large circle. Then $AB^2 = AP^2 + BP^2$. So $R^2 = AP^2 + (\frac{1}{2}R)^2$. Thus $AP^2 = \frac{3}{4}R^2$. Since OB = OA, AP = r + OA = r + OB, i.e. OB = AP - r. Now, applying Pythagoras' Theorem to $\triangle OBP$, we get

$$OB^{2} = BP^{2} + OP^{2}$$
$$(AP - r)^{2} = (\frac{1}{2}R)^{2} + r^{2}$$
$$AP^{2} - 2AP.r + r^{2} = \frac{1}{4}R^{2} + r^{2}$$
$$\frac{3}{4}R^{2} - \frac{2\sqrt{3}}{2}Rr = \frac{1}{4}R^{2}$$
$$\frac{1}{2}R^{2} = \sqrt{3}Rr$$
$$R = 2\sqrt{3}r$$

Hence, the area of the circumcircle is $\pi R^2 = 12\pi r^2$ which is exactly twice the shaded area.

Alternative Solution. Area of circumscribed circle is πR^2 . Shaded area is $6\pi r^2$ where r = OP. From the triangle *OBP*, $BP = \frac{1}{2}BC = \frac{1}{2}AB = \frac{1}{2}R$. So $r/(\frac{1}{2}R) = \tan 30^\circ = 1/\sqrt{3}$. So $r = \frac{R}{2\sqrt{3}}$. So shaded area is $6 \times \frac{r^2}{12} = \frac{1}{2}r^2$. **M5.** Forty cylindrical tubes, each with diameter one inch and equal lengths, are packed as shown snugly in 5 rows of 8 each in a box so that they may be transported without rattling. Show that the box could be repacked with forty-one of the same sized cylindrical tubes. Will they now rattle?

Solution

The box can be repacked as shown.

Consider a cluster of four circles. The right-angle triangle shown has known sides $\frac{1}{2}$, 1. Hence by Pythagoras' Theorem, the third side is $\sqrt{1^2 - \frac{1^2}{2}} = \sqrt{\frac{3}{4}} = \frac{1}{2}\sqrt{3}$.

This represents the distance between the centres of adjacent columns of which there are 9. Hence the total distance from left to right is $\frac{1}{2} + \frac{8}{2}\sqrt{3} + \frac{1}{2} = 4\sqrt{3} + 1$ and this is less than 8. Thus they can be packed in the box.

Since $4\sqrt{3} + 1$ is strictly less than 8 there will be room for the tubes to rattle in the box.