M1. How many squares, of all sizes, are seen on a standard, $9 \times 9$ Sudoku grid?

## Solution

Consider the numbers of squares of all possible sizes:

```
\(1 \times 1\) squares
\(2 \times 2\)
\(3 \times 3\)
```

there are $9 \times 9=81$
these could have their top left corner in any square which is not in the
last row or column giving $8 \times 8=64$ possibilities
etc

Hence the number of squares is $1+4+9+16+25+36+49+64+81=285$.

M2. I took the same route when I cycled to and from work today. Due to a strong headwind on the way home, the return journey took twice as long as the journey to work. If my average speed for the whole journey was $16 \mathrm{~km} / \mathrm{h}$ what were my average speeds to and from work?

## Solution

Let the distance to work be $x \mathrm{~km}$ and the journey time in the morning be $t$ hours.
Total time $=3 t=\frac{2 x}{16}=\frac{x}{8}$ so that $\frac{x}{t}=24$ and hence the speed on way to work $=24 \mathrm{~km} / \mathrm{h}$.
On the return journey, average speed $=\frac{x}{2 t}=\frac{1}{2} \frac{x}{t}=12$ so the return journey speed is $12 \mathrm{~km} / \mathrm{h}$.

M3. The diagram below illustrates a spiral sequence $A_{0}, A_{1}$, $A_{2}, A_{3}, \ldots$ which starts at the origin. The first leg of the spiral has length 1 and after the that, the length increases by one each time.
What is the sum of the 6 coordinates of $A_{2001}, A_{2002}$ and $A_{2003}$ ?


## Solution

Looking at the coordinates of the points $A_{0}, A_{1}, \ldots$
$A_{0}(0,0)$
$A_{4}(-2,-2)$
$A_{1}(0,1)$
$A_{2}(2,1)$
$A_{3}(2,-2)$
$A_{8}(-4,-4)$
$A_{5}(-2,3)$
$A_{6}(4,3)$
$A_{7}(4,-4)$
$A_{9}(-4,5)$
$A_{10}(6,5)$
$A_{11}(6,-6)$
etc

Note that the points $A_{0}, A_{4}, A_{8}, \ldots$, where the suffix is a multiple of 4 are given by $A_{n}\left(-\frac{n}{2},-\frac{n}{2}\right)$. Also, when $n$ is a multiple of 4 :

$$
A_{n+1} \text { is }\left(-\frac{n}{2}, \frac{n}{2}+1\right) ; A_{n+2} \text { is }\left(\frac{n}{2}+2, \frac{n}{2}+1\right) \text { and } A_{n+3} \text { is }\left(\frac{n}{2}+2,-\frac{n}{2}-2\right) \text {. }
$$

Taking $n=2000$, we get $A_{2000}(-1000,-1000), A_{2001}(-1000,1001), A_{2002}(1002,1001)$ and $A_{2003}$ (1002, -1002).
So the required sum is: $-1000+1001+1002+1001+1002-1002=2004$.

M4. The diagram shows a regular hexagon with its diagonals drawn and six circles fitted into the regions created. What fraction of the circumscribing circle is shaded?


## Solution

Consider one of the shaded circles.


Let $O P=r=$ radius of the small circle and $A B=B C=C A=R=$ radius of the large circle. Then $A B^{2}=A P^{2}+B P^{2}$. So $R^{2}=A P^{2}+\left(\frac{1}{2} R\right)^{2}$. Thus $A P^{2}=\frac{3}{4} R^{2}$. Since $O B=O A$, $A P=r+O A=r+O B$, i.e. $O B=A P-r$. Now, applying Pythagoras' Theorem to $\triangle O B P$, we get

$$
\begin{aligned}
O B^{2} & =B P^{2}+O P^{2} \\
(A P-r)^{2} & =\left(\frac{1}{2} R\right)^{2}+r^{2} \\
A P^{2}-2 A P \cdot r+r^{2} & =\frac{1}{4} R^{2}+r^{2} \\
\frac{3}{4} R^{2}-\frac{2 \sqrt{3}}{2} R r & =\frac{1}{4} R^{2} \\
\frac{1}{2} R^{2} & =\sqrt{3} R r \\
R & =2 \sqrt{3} r
\end{aligned}
$$

Hence, the area of the circumcircle is $\pi R^{2}=12 \pi r^{2}$ which is exactly twice the shaded area.
Alternative Solution. Area of circumscribed circle is $\pi R^{2}$. Shaded area is $6 \pi r^{2}$ where $r=O P$. From the triangle $O B P, B P=\frac{1}{2} B C=\frac{1}{2} A B=\frac{1}{2} R$. So $r /\left(\frac{1}{2} R\right)=\tan 30^{\circ}=1 / \sqrt{ } 3$. So $r=\frac{R}{2 \sqrt{3}}$. So shaded area is $6 \times \frac{r^{2}}{12}=\frac{1}{2} r^{2}$.

M5. Forty cylindrical tubes, each with diameter one inch and equal lengths, are packed as shown snugly in 5 rows of 8 each in a box so that they may be transported without rattling. Show that the box could be repacked with forty-one of the same sized cylindrical tubes. Will they now rattle?


## Solution




The box can be repacked as shown.
Consider a cluster of four circles. The right-angle triangle shown has known sides $\frac{1}{2}, 1$. Hence by Pythagoras' Theorem, the third side is $\sqrt{1^{2}-\frac{1}{2}^{2}}=\sqrt{\frac{3}{4}}=\frac{1}{2} \sqrt{3}$.
This represents the distance between the centres of adjacent columns of which there are 9 . Hence the total distance from left to right is $\frac{1}{2}+\frac{8}{2} \sqrt{3}+\frac{1}{2}=4 \sqrt{3}+1$ and this is less than 8 .
Thus they can be packed in the box.
Since $4 \sqrt{3}+1$ is strictly less than 8 there will be room for the tubes to rattle in the box.

