Junior Division 2016-2017 Round 1 Solutions

J1. A school has fewer than 200 pupils.
When they line up in rows of 4 there is 1 extra pupil.
When they line up in rows of 5 there are 2 extra pupils.
When they line up in rows of 6 there are 3 extra pupils.
How many pupils could there be in the school?

Solution 1

Rows of 4: 5, 9, 13, 17, ...
Rows of 5: 17 pupils will leave 2 over
Rows of 6: for there to be 3 people left over the number must be divisible by 3 and be odd.
So 17 works for rows of 4 and 5 but not 6 .
But if we add $5 \times 4(=20)$, it will still work for rows of 4 and 5 .
So we get $37,57, \ldots$ and 57 is divisible by 3 .
Thus 57 is one possible answer.
\{Other possibilities are obtained by adding the lowest common multiple of 4,5 and 6 , i.e. 60 .
So the possible numbers of members are 57, 117 and 177.\}

Alternative solution:

(i) Rows of 5: Multiples of 5 all end in 5 or 0 so the situation with rows of 5 with 2 left over gives a total ending in 7 or 2 .
(ii) Rows of 6: for there to be 3 left over the total must be odd and a multiple of 3 .

So from (i) the total must and in 7:7,17, 27, 37, 47, 57,....., 187, 197.
Check for those that are multiples of $3: 27,57,87,117,147,177$.
(iii) Rows of 4: for there to be 1 person left over the total has to be 57,117 or 177 .

J2. Professor A. M. Nesia has a safe with a combination lock. In her journal, the note she uses to help her remember is this diagram \rightarrow

and the year of her birth, 1941,
This reminds her that the code is a sequence of five perfect squares (square numbers) in ascending order where the mean $=19$, median $=4$ and mode $=1$.
Find the combination.

Solution

With five numbers written in numerical order, the third one must be the median: _, _, $4, \ldots$,
The mode is 1 and this has to be before the 4 so both numbers less than 4 must be $1: 1,1,4,_{-}$,
Let the last two values be a and b.
The mean is 19 so the total $=1+1+4+a+b=19 \times 5$, i.e. $a+b=89$.
We need two perfect squares which add up to 89 :
Square numbers: $1,4,9,16,25,36,49,64,81$ and to get a last digit of 9 it has to be 4 and 5 ie $a=25$ and $b=64$.

So the combination is 1142564 .

J3. My petrol tank was a quarter full when I pulled into the petrol station. I put in $£ 22.50$ worth of petrol and noticed that the tank was now two thirds full. The cost was $£ 1.20$ per litre.

What is the capacity of the petrol tank?
Solution
Let a full tank cost $£ x$.
Fuel put into tank is $\frac{2}{3}-\frac{1}{4}\left(=\frac{5}{12}\right)$ of the capacity of the tank.
So,

$$
\begin{aligned}
\frac{5}{12} x & =22.50 \\
x & =(22.50 \times 12) \div 5=54
\end{aligned}
$$

If a full tank costs $£ 54$ to fill and a litre costs $£ 1.20$ then the number of litres in a full tank is

$$
54 \div 1.20=45
$$

The capacity of the petrol tank is 45 litres.

J4. A victorious football team in an open-top bus is scheduled to leave the home ground and arrive at the town hall at 11 am . If the bus travels at 15 mph it will arrive 8 minutes early. However if it travels at 10 mph it will arrive 8 minutes late. At what speed must it travel to arrive at 11 am exactly?

Solution

Let the distance be d miles and the required travel time t hours. Then

$$
\begin{aligned}
& \frac{d}{15}=t-\frac{8}{60} \\
& \frac{d}{10}=t+\frac{8}{60}
\end{aligned}
$$

Adding

$$
\begin{gathered}
\frac{d}{15}+\frac{d}{10}=2 t \\
\frac{d}{12}=t
\end{gathered}
$$

So the required speed is 12 mph .

J5. (a) Adam has a five-digit number

When he places a 1 at the end of this number it becomes a six-digit number three times as large as the number he obtained when he places a 1 at the start.
Find the five-digit number.
(b) If you added a 1 in the same way to a 3-digit number how many times as large would it have to be?
Solution
(a)

$$
* * * * * 1=3 \times 1 * * * * *
$$

Let the five digit number be x.

$$
\begin{aligned}
10 x+1 & =3(100000+x) \\
10 x+1 & =300000+3 x \\
7 x & =299999 \\
x & =42857
\end{aligned}
$$

(b)

Three digit number

$$
* * * 1=n \times 1 * * *
$$

Let the three digit number be y.

$$
\begin{aligned}
& 10 y+1=n(1000+y) \\
& (10-n) y=1000 n-1
\end{aligned}
$$

List the possibilities for $n=1$ to 9 and the only ones which give y as an integer are $n=1,7$ and 9 but $n=1$ means that the value has not changed. In this case $10 y+1=1000+y, 9 y=999$. So $y=111$.
However, $n=7$ or 9 both lead to y as a four-digit number (2333 or 8999).
So this only works for a three-digit number when the number is 1 times as large i.e. unchanged.

